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Abstract

A method for characterizing the air permeability of sandwich core materials as a
function of applied shear stress was developed. The core material for the test specimens
was either Hexcel HRP-3/16-8.0 or DuPont Korex-1/8-4.5 and was nominally one-half
inch thick and six inches square. The facesheets where made of Hercules' AS4/8552
graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's
Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the
core. The permeability of the specimens during both static (tension) and dynamic
(reversed and non-reversed) shear loads were measured. The permeability was measured
as the rate of air flow through the core from a circular 1-in 2 area of the core exposed to an

air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core
experienced sudden increases in core permeability corresponding to a core catastrophic
failure, while the HRP core experienced a gradual increase in the permeability prior to
the core failure. The Korex core failed at lower loads than the HRP core both in the
transverse and ribbon directions.

Introduction

Fibrous composite materials are being considered for commercial aircraft fuselage
structures due to potential reductions in acquisition cost and weight. Composite
sandwich structures are being developed for the keel and side panel, and may be adopted
for the crown panel of a commercial fuselage [1-2]. A critical issue for the sandwich
concept is environmental durability. Fuselage skin panels will be exposed to water from
both the interior and exterior of the airplane in service. Other fluids, such as solvents and
hydraulic fluids, will also be encountered, though less frequently and only in local areas.
Exposure to these fluids in combination with thermal and mechanical loads can result in
degradation of some composite structures. Sandwich structures have been observed to
absorb moisture to the point of saturation, resulting in weight gain, degradation of core
and facesheet materials, and degradation of the core-to-facesheet bond. In addition, poor
quality repairs of damaged sandwich structures may result. It is thus important to
understand the fluid ingression paths in composite structures as well as the fluid effects
on the structure.



A majority of work performedon the effectsof fluids on compositesis relatedto
moisture diffusion in composite laminates and the associatedeffects on material
properties. Both Fickian and non-Fickian moisture diffusion have beenobservedin
carbon/epoxy composites [3-6]. The rate of diffusion is primarily dependenton
temperaturebut is also influenced by moisture concentrationor stress. Non-Fickian
diffusion has beenobservedat room temperaturesand generally is accompaniedby
matrix swelling and void formation,while Fickian diffusion wasobservedat elevated
temperatures. Absorbed water has been found to suppress the glass transition
temperatureof thematrix resin,thusdegradingtheelevatedtemperatureperformance[4].
It has also been determinedthat absorbedwater may plasticize the resin matrix and
degradethe fiber/matrixbond [5]. Moisture sorption may reduce resistance to transverse
matrix cracking caused by thermal and/or mechanical loads [7]. Stress relaxation in the
matrix resin at elevated temperature with absorbed water has been shown to alter the
static mechanical strain required to initiate matrix cracking. Severe matrix cracking in
sandwich facesheets may provide a path for liquid ingression into the core.

The effects of

been evaluated [8].
glass/phenolic and
cycling in a humid

freeze-thaw cycling on water ingression in sandwich structures have
Both damaged and undamaged carbon/epoxy sandwich panels with
Nomex honeycomb core materials were subjected to freeze-thaw
atmosphere. The undamaged panels exhibited no water ingression

after 1000 cycles, while water ingression was observed in damaged panels with
glass/phenolic core but not with the Nomex core. Several damaged carbon/epoxy and
glass epoxy sandwich panels with Nomex core were evaluated by exposure to
freeze/thaw cycling with humidity at Boeing. All the panels absorbed moisture but only

one panel showed liquid water in the core [9]. In other tests at Boeing, water ingression
occurred in carbon/epoxy sandwich panels with Nomex core wherever the finish or
barrier film was damaged.

A test method for detecting fluid ingression paths in sandwich panels by measuring
air permeability of the facesheet was developed at Boeing [9]. The facesheet
permeability test method was extended to the evaluation of impact damage in sandwich
structures. Boeing has also conducted permeability tests on coupons cut from specimens
that had been loaded in three point flexure. The tests, however, were not conducted while
the specimen was loaded. The Boeing tests demonstrated that Hexcel HRP honeycomb
core material exhibited resistance to damage at shear stress levels up to 60% of the

ultimate strength in the ribbon direction, and up to 70% in the transverse direction.
DuPont Korex honeycomb core material exhibited resistance to damage at shear stress
levels up to 75% of the ultimate strength in the ribbon direction, and up to 90% in the
transverse direction. The air permeability in the HRP core material gradually increased
with stress once damage appeared. In the Korex material transverse direction, the

permeability increased from 0.0 ml/min/psi to 14.46 ml/min/psi with an increase in the
shear stress of only 12 psi. In the ribbon direction, the Korex material did not see

significant increases in the permeability at the tested shear stress levels.

The environmental durability of the sandwich panels must be demonstrated prior to
use in fuselage skin panels. The resistance of the core material to damage that would
allow internal migration of fluids from local ingression points must also be understood.
Characterizing the air permeability of sandwich core materials as a function of applied
transverse shear stress is an important step in understanding the usefulness of the
sandwich panels. The air permeability, defined as the flow rate (ml/min) divided by

applied pressure (psi), will give an indication of how fluids migrate in the structure. The
objective of this work was to determine how the air permeability in honeycomb sandwich
specimens increased as a function of applied shear stress. An existing test machine was
used along with a method developed to apply 10 psig air to the internal honeycomb core.



The HRP and Korex honeycombcoreswere evaluatedunderboth static and dynamic
(reversedandnon-reversed)loads.

Experimental Approach

To determine the permeability of the honeycomb core sandwich panels under shear
loads, an apparatus was constructed that enabled both static and dynamic loads to be
applied while the honeycomb core was exposed to a constant 10 psig air supply. A data

acquisition system was assembled to monitor and acquire the test data. A discussion of
the apparatus, the data acquisition system, and the specimen fabrication follows.

Apparatus

The maximum load required in the samples was estimated to be 27,000 lb, based on
shear strength of the honeycomb core reported by the manufacturer. AS&M used an
existing servohydraulic universal testing machine (UTM) to apply the desired load. The
loading scheme was in conformance with ASTM C273-61 (reapproved in 1988). The test
fixture used initially was designed and fabricated by Wyoming Test Fixtures. The test
fixture was used successfully for all the static tests and kept the samples properly aligned
for each test.

When the test fixture was used for the non-reversed load fatigue tests, the
component of the fixture which is bolted to the loading plate cracked. A replacement for
this part was procured from Wyoming Test Fixtures, which also cracked. A further
replacement of this part was made after an in-house modification of its design, consisting
of increased moment of inertia, higher fillet radii, and choice of a different grade of steel.
After replacement, all the non-reversed load fatigue tests were carded out successfully.

However, when reversed loading was attempted using the above fixtures, extensive
relative displacement of the loading plate with the fixture was noticed. This was because
the clamping based on friction would work only if the tension in each bolt was on the
order of the applied tension on the specimen assembly. This is unlike the situation during
non-reversed loading when one-time displacement and bolt-to-hole contact would
eliminate the need for frictional support. Attempts to increase bolt tension resulted in the
failure of the bolts. In order to overcome this, a new design, based on direct support on
the bolts rather than friction, was made. For this purpose, the bolt holes and bolts were
made conical and the nuts were tightened over washers. Figure 1 shows a schematic
diagram of the redesigned bolt used for the testing. The redesign ensured 360 ° contact
between the holes and the bolts, eliminating any scope for relative displacement during
loading. With this modification, all the reversed load fatigue tests were carried out
successfully.

Load plate side Fixture side

Figure 1: Schematic diagram of the redesigned, tapered bolt used for the fully
reversed tests.



A load plateis shownin Figure 2 attachedto the fixture which connectsthe load
plateto the loadcell. Four taperedholesin theflangeregionof the loadplatewereused
for the connection. Both the holes in the load plate and the holes in the fixture were
taperedfor thetaperedbolts shownabove.

Loadplate

Taperedbolt _

Figure2: Schematicdiagram of the fixture connectedto the load plate with the
taperedbolts.

Data Acquisition

Personal computers (PC's) were used to acquire the data. The electrical output
signals from the load-cell conditioner of the UTM, the mass flow meter, and the
capacitance manometer were input to the computers through appropriate interface units,
as shown in Figure 3. ....................................................

i : Data acquisiti0n during the tests was carded out by an IBM-compatible _C ti_o_ugla

a Hewlett Packard 3497A data acquisition unit. During the static tests, the signals
monitored were from the load cell conditioner of the UTM, the capacitance manometer,
and the mass flow meter, all as a function of time. The signals were stored in the hard
disk at uniform intervals of time.

During fatigue testing, the test was controlled at a pre-determined mean and
amplitude of the pulsating load which was displayed in the display unit of the machine.
The only parameters monitored by the computer were the pressure and flow rate, which
were generated by the respective transducers mentioned above. Data was recorded both
at timed intervals and also when the signals underwent significant changes in their values.



Timed intervalswereincrementedin suchaway that while finer resolution was available
during the initial cycles, a larger number of cycles could be accommodated in a data set
of reasonable size. This did not come in the way of detecting failure, as such events
would cause recording of data irrespective of the time interval.

Servo

valve
Air supply

Pressure sensor

Flowmeter

--__i Pressure controller

_ Pressure readout

Specimen

Data acquisition

Figure 3: Schematic diagram of test set-up for permeability shear tests.

The 10.0 psig air supply was produced from a bottle of high pressure air. A
pressure controller was used to control the air pressure. The pressure was monitored
through a capacitance manometer. A flow meter was used to determine the flowrate of
the air to an accuracy of 1 ml/min. The air flow rate was measured between the air

supply and the pressure controller, as shown in Figure 3.

Specimens

Boeing supplied AS&M with two sandwich core panels. One panel had a
dimension of 36 in. x 36 in., and contained Hexcel HRP-3/16-8.0 honeycomb core. The
other panel had a dimension of 4_ in_ x 26 in. and contained DuPont Korex-l/8-4.5
honeycomb core. The facesheets where made of Hercules' AS4/8552 graphite/epoxy
(Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M
epoxy film adhesive was used for co-curing the facesheets to the core. In both cases, the
core thickness was nominally 0.5 in. and the total sandwich panel thickness was
nominally 0.62 in. Specimens with a dimension of 6 in. x 6 in. were cut from each panel.
The edges of the panel were not included in the specimen area in order to eliminate the
inclusion of any edge effects that may have occurred during the co-cure fabrication.
After the specimenswere cut, 14 holes with a 3/16 in. diameter were drilled through one
facesheet in a 1 in. diameter area in the center of the facesheet. The photograph in Figure
4 shows the 14 holes in the center of a_in. x 6 in. specimen. Care was taken to
minimize damage to the honeycomb core during the drilling of the holes. Also shown in
Figure 4 is a load plate with a 1 in 2 circular area counter-sunk bore that matched the

location of the holes in the specimen. On the opposite side of counter-sunk bore is a 0.25



in. threadedholefor the air supply. Also seenin Figure4 is thefixture usedto align the
loadplateswhenbonding.

Figure4: Photographof a loadplate,specimen,andbondingfixture.

Theprecipitationhardenedstainlesssteelloadplateswerebondedto theoutsideof
eachfacesheetwith Hysol EA 9309NA room temperaturecureadhesive. Initially, the
bonding was performed at room temperature. However, due to the long cure times
required,elevatedtemperaturecuringwasusedafter thefirst few specimensto shorten
thedowntimebetweentests. Theprocedurefor bondingtheloadplatesto thespecimens
is shownin Table 1. A specialfixture wasmadeto properlyalign theloadplatesandthe
specimenduring bonding to minimize any momentsthat would be introduced during
testing. The fixture with a specimenbetweentheloadplatesis shownin Figure 5. The
fixture, a steelplate with the four pins that penetratethe holes in the load plate tabs,
aligns the load platesduring bondingso that the shearstressis appliedduring testing
without any undesiredmoments. After eachtestwascompleted,the load plateswere
removedfrom thespecimen,cleaned,andrebondedto thenextspecimen.

Figure5: Photographof aspecimenin thebondingfixture betweentwo loadplates.



Table 1"ProcedureForBondin_SandwichPanelSpecimensto LoadPlates

1. Cleanbothsurfacesof thesandwichcorespecimenwith ethyl alcohol
2. Sandblastsandwichcorespecimen

a) Maskthesidesof thespecimenwith tape
b) Maskthedrilled holeswith tape
c) Placethespecimenin thesandblastingcabinet
d) Adjust thecompressorpressureto 40psi
e) Setthe air pressurefor blastingat 20psi by adjustingtheregulatorattachedto

thecabinet
f) Startthereclaimer
g) Position the workpiece conveniently in the cabinet so that the gun can

comfortably scan the entire surfaceof the specimenfrom a distanceof six
inchesfrom thesurfaceof thespecimen

h) Pressthefoot pedalto operatethegun
i) Hold thegun aboutsix inchesfrom thefaceof thespecimenandblasttheentire

surfaceuniformly
j) Shutoff airflow
k) Shutoff reclaimer
1) Openwindow andremovespecimen
m) Ensurebothsidesof thespecimenareproperlycleaned

3. Cleanbothsurfacesof thesandwichcorespecimenwith ethyl alcohol
4. Placespecimenin cleanzip lock bagsuntil bonding
5. Sandblasttheloadplates

a) Cleanall thesurfaceswith ethyl alcoholprior to insertingin thesandblaster
b) Follow the sameprocedureasusedfor sandblastingthe specimensexceptusea

pressureof 40psi
c) Sandblastonly thesurfaceto bebonded
d) Cleanall thesurfaceswith ethyl alcoholafterremovingfrom thesandblaster

6. Placetheloadplatesin cleanzip lock bagsuntil bonding
7. Prepareadhesiveaccordingthemanufacturersinstructions
8. Placetheloadplatewith theholefor theair supplyin thebondingfixture with the 1-

in-diameterholefacingup
9. Apply athin layerof adhesiveon thesurfaceof the loadplate,carefullyavoidingthe

holein thecenter
10. Placethe sandwichcorespecimenon the adhesivecoatedloadplate with the holes

facingdown
11. Apply athin layerof adhesiveto thesurfaceof theotherloadplate
12. Placetheloadplateon topof thespecimenin thefixture. Ensurethat thetabson the

load plates are in the opposite direction
13. Place a piece of rubber over the top load plate

14. Place 5 l°s! on top °fthe ru bber sheet and allow to set for 1 hour at 150°F

Discussion of Results

All tests were performed at ambient conditions. Two different honeycomb cores
were tested: Hexcel HRP-3/16-8.0 and DuPont Korex-1/8-4.5. The Hexcel HRP-3/16-8.0

has a 3/16 in. cell size and an 8.0 lb/ft 3 density. The DuPont Korex-1/8-4.5 has a 1/8 in.
cell size and an 4.5 lb/ft 3 density. Both static and cyclic loads were applied parallel
(ribbon direction) and perpendicular (transverse direction) to the core ribbon. Non-
reversed and fully reversed cyclic loads were studied. ASTM C 273 states that the load
should pass through the edge of the specimen.
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Figure6: Photographof specimenin testmachinewith plum line showingload path
throughthecomerof the specimenasstatedin ASTM C 273.

The photographin Figure 6 showsa specimenin the testmachinewith a "plumb
line" alongtheloadpath. As canbeseenin thephotograph,theplum line passesthrough
the comers of the specimen. Permeability was measuredsimultaneouslywith the
increasingload (or stress),andreportedasmeasuredflow rate divided by the applied
pressure.

Static Tests

For the static tests, the specimens were loaded to the ultimate shear strength of the

honeycomb cores at a rate of 4500 Ib/min, which is recommended by ASTM C 273. Two
specimens were used for each material in each orientation. The matrix for the static tests
is shown in Table 2, along with the ultimate shear stress.

Table 2: Ultimate Shear Stress Under Static Loads for Hone_ccomb Sandwich Panels.

Material Orientation Specimen No. Ultimate Shear Stress, psi Av_.

HRP-3/16-8.0 Ribbon 2 450 449.5
9 449

Transverse 3 361 369.5
11 378

Korex-1/8-4.5 Ribbon 5 348 344.5
8 341

Transverse 6 231 228.5
10 226

The permeability, which is defined as the measured flow rate divided by the applied
pressure, is shown in Figure 7 for each of the HRP and Korex specimens as a function of
applied shear stress. The permeability is plotted to only 5 ml/min/psi, though in the case
of the HRP core, failure occurred at higher values. Definite trends can be seen from the
data. The ribbon direction is the stronger direction, as indicated in Table 2, and resists



increasesin air flow for higher loads. In addition, the sandwich panels made with the
Korex core are not as strong as those made with the HRP core. However, the most
interesting aspect of the data is that the Korex core permeability seemed to increase
instantaneously when the core failed, with no significant increase prior to failure. The
HRP specimens experienced an increase in the permeability prior to failure, and the
failure appeared to be a bondline failure.

5.0

4.0

3.0

Permeability,
ml/min/psi

2.0

1.0

Figure 7:

0.0

Korex ribbon

Korex transverse

HRP transverse f

I HRPribbon

/

0 100 200 300 400 500

Shear stress, psi

Permeability of HRP and Korex core specimens as a function of applied
shear stress.

Figure 8: Photograph showing the typical bondline failure mode of the HRP
specimens.



Figure8 showsaphotographof a typical HRP sample after failure. In the figure, it
can be seen that the core failed at the bondline. This would seem to indicate that testing
of further adhesives may be wan'anted with the HRP core to increase the failure load by
shifting the failure from the bondline to the core.

Dynamic Tests

Air flow measurements were also made at stress amplitudes between the ultimate
shear strength, Ssu, and the endurance limit, S se, of each honeycomb material. Data for a

typical S-n plot was generated by subjecting the specimens to a stress level for nf cycles.
Data was obtained for both fully reversed and non-reversed cyclic loads. The
permeability was measured at regular intervals as the number of cycles increased. The
data sampling rate was decreased as the load was decreased. The maximum number of
cycles was approximately 106. A loading rate of 5 Hz was used, but was increased to 10
Hz for some of the specimens that were anticipated to run for extended cycles, and was
decreased to 2 Hz for specimens that were anticipated to run for only a limited number
cycles. Care was taken to obtain a load rate low enough that no significant changes in
temperature were present that altered the mechanical properties of the core.

Non-Reversed

The test matrix for the non-reversed fatigue tests is shown in Table 3 along with the
specimen number, the shear stress, and the number of cycles to failure. In order to get an
idea of how the applied shear stress compared to the ultimate static shear stress given in
Table 2, the shear stress is also given in terms of the percentage of the ultimate static
shear stress. In specimen number 30, the core failed, which was unusual for the HRP

specimens since most failed at the bondline. Specimen number 41 was bonded
incorrectly, and as a result, no permeability data was obtained, though failure was
determined.

During the tests, air flow measurements were made while the specimens were being
subjected to cyclic loads. The cyclic loading was done at different stress amplitude levels
for different specimens, ranging from 94% of the ultimate static shear strength
downwards. Data sets, acquired at intervals of 1 ms, were stored at pre-determined time
intervals. Results from the first two or three tests gave the appropriate trend of the S-n
relation, enabling the determination of the amplitude levels for the subsequent tests.

Initial plans called for eight specimens to be tested in the fully reversed mode for
each type of panel, and two non-reversed specimens for each type of panel. However,
during the initial reversed testing, the fixture connecting the load plates to the load cell
broke due to fatigue. A second fixture was then procured from Wyoming Test Fixtures
and it again broke. At that point, two fixtures were fabricated locally that were much
stronger than the ones used previously. It was then decided to switch the testing and do
eight non-reversed and three fully reversed for each type of specimen. The two new
fixtures were successfully used for the remainder of the non-reversed tests.

Figure 9 shows the S-n plot for the non-reversed fatigue tests for each of the four
different types of specimens. In each case, the data point plotted is for the number of
cycles to failure. The average static strength, given in Table 2, is also shown in the figure
as the data for 1 cycle. As is consistent with Boeing's prior tests [10], the Korex core
failed at lower loads than the HRP core specimen. However, the S-n curve is much
flatter for the Korex core specimen than for the HRP core, indicating that Korex failure
load is less of a function of the number of cycles than is the HRP failure load. For each

10



case, the data are fit with a logarithmic curve fit, which appears linear on the semi-log
plot.

Table 3: Non-Reversed Fati[ue Test Matrix for Hone_ccomb Sandwich Panels.

Material Orientation Spec. No. Max. shear stress, psi No. cycles to failure

HRP-3/16-8.0 Ribbon 29 220 (49%) 1001310
28 264 (59%) 92210
27 308 (69%) 26520
26 352 (78%) 5795
40 375 (83%) 2480
25 400 (89%) 248

Transverse

(core failed)

(no penn., bonded wrong)

34 185 (50%) 691572

32 195.5 (53%) 643127
30 207 (56%) 157465

31 218.5 (59%) 70703
33 223.1 (60%) 33500
37 238 (64%) 28022
38 248 (67%) 35858
39 260 (70%) 42925
41 300 (81%) 780
42 320 (87%) 800

Korex- 1/8 -4.5 Ribbon 18 238 (69%) 1000000
19 255 (74%) 303985
16 272 (79%) 42104
20 289 (84%) 23850
35 306 (89%) 39927
15 306 (89%) 23655
17 323 (94%) 833

Transverse 22 180 (78%) 699250
24 186 (81%) 259684

7 190.9 (84%) 18645
23 197 (86%) 37482
36 198 (87%) 990
21 202.5 (89%) 468

Figure 9 shows the S-n curve for both the HRP and Korex cores for failure. The
Korex core experienced negligible increase in permeability until the core failed, at which

point the permeability increased significantly. The HRP core, however, experienced a
gradual increase in permeability. Figure 10 shows the S-n curve for the HRP core in the
ribbon (solid lines) and transverse (dashed lines) directions at different flow rates, i.e.,
permeability values. Since the Korex core failed catastrophically, an S-n curve for
different values of permeability is not of value since all the curves would fall on the same
line as the failure S-n curve shown in Figure 9. S-n curves are plotted for the number of
cycles it took to initially reach a permeability of 1, 2, and 4 ml/min/psi at the applied test
load. The failure S-n cure is also shown on the figure. In the ribbon direction, failure
occurred at loads near a permeability of 4 ml/min/psi. However, for the transverse
direction, there was a significant increase in the load from 4 ml/min/psi to failure. This

11



trend, which will be further confirmed in later figures, indicates a more gradual increase
in permeability with load for the transverse direction than the ribbon direction.

500

450 HRPnbbon

400

Load, psi
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1

Figure 9: S-n curve

Figure 10:
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Non-reversed S-n curve showing load versus number of cycles to failure and
load versus number of cycles to reach permeability values of 1, 2, and 4
ml/min/psi for the HRP core in both the ribbon and transverse direction.
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psi).

Figure 12: Photograph of a Korex core specimen after failure.

Figure 11 shows the permeability versus number of cycles for the Korex core in the
ribbon direction. Again, the permeability is defined as flowrate divided by stress level.

The average static shear strength is 344.5 psi (see Table 2) and the percent of the shear
strength is also shown in the figure. The number of cycles to failure, which in the case of
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the Korex corecorrespondsto the suddenincreasein permeability,increasedwith load
except for a casewith 306 psi. The casewith a 306 psi load was rerun and the
permeabilitywasin theexpectedrange. Figure 12showsaphotographof theKorex core
after failure. From the photograph,it canbe seenthat the core failed in the internal
portion of thecore,and not at the bondline. This is in contrastto theHRPcore failure
shownin Figure8 wherethefailure occurredat thebondline.

Figure13showsthepermeabilityversusnumberof cyclesfor theKorexcore in the
transversedirection. As expected,theaveragestatic shearstrength(228.5psi) is lower
thanfor theribbondirection. Thepermeabilityagainincreasedalmostinstantaneouslyat
failure, with negligible air flow prior to failure. Thoughthenumberof cyclesto failure
did not increasewith decreasedload for all cases,i.e. the 197psi case,thegeneraltrend
wasthat anincreasedloadresultedin a decreasednumberof cyclesto failure.
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1
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198 psi
(87%) -- N

190.9 psi
(84%)
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\
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\

Figure 13:
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Permeability as a function of number of cycles for non-reversed fatigue tests
with Korex core in the transverse direction (avg. static shear strength of
228.5 psi).

Figure 14 shows the permeability versus number of cycles for the HRP core in the
ribbon direction. Increased load results in a decreased number of cycles to reach
permeability values of 4 ml/min/psi. The major difference between the Korex and HRP
core can be seen by comparing the shape of the curves in Figure 14 with those in Figure
11 and Figure 13. In Figure 14, there is a gradual increase in the permeability with an
increase in the number of cycles. As mentioned previously, and shown in Figure 8, the
HRP samples generally failed at the bondline between the core and the facesheet. The
bondline failure appears to be gradual and grows with increased cycles. In contrast, the
Korex core samples generally catastrophically failed in the core material, resulting in a
sudden increase in the permeability. Several of the HRP samples also experienced an
inflection in the permeability as the number of cycles was increasing.
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Permeability as a function of number of cycles for non-reversed fatigue tests
with HRP core in the transverse direction (avg. static shear strength of 369.5
psi).
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Figure 15showsthepermeabilityversusnumberof cyclesfor theHRP corein the
transversedirection. The datafrom testnumbers38and41 arenot shownin thefigure
due to bad air flow ratedataandimproperbonding,respectively. In general,increased
loadresultsin a decreasednumberof cyclesto reachpermeabilityvaluesof 4 ml/min/psi.
Again, thereis a gradualincreasein the permeabilitywith an increasein thenumberof
cycles. However,as seenin Figure 10, the increasein permeabilitywith load is more
gradualfor thetransversedirection than the ribbon direction. As with the samples in the
ribbon direction, several of the transverse HRP samples also experienced an inflection in

permeability as it was increasing. The inflection appears to be larger for the transverse
specimens than the ribbon specimens. In this figure, the inflection occurs at higher
permeability values for higher loads. From this figure, it would appear that the inflection
in the permeability is physical, and is not due to noise in the data acquisition system.
Also leading to the thought that the inflection is physical and not noise in the data
acquisition is the fact that the permeability experiences both a translation and a change in
its rate of increase after the inflection. However, the physical reason for the inflections is

not apparent.

Reversed

For the reversed tests, fewer specimens were tested for each orientation. As a result
of the reduced specimen number, fewer data points were available to generate the S-n
curve. The matrix for the reversed fatigue tests is shown in Table 4 along with the shear
stress level and the number of cycles to failure. In order to get an idea of how the applied
shear stress compared to the ultimate static shear stress given in Table 2, the shear stress
is also given in terms of the percentage of the ultimate static shear stress. As can be seen
from the data in Table 4, the number of cycles to failure is significantly less when the
load is reversed than when the applied load is non-reversed (see Table 3).

Table 4: Fully Reversed Fatigue Test Matrix for Honeycomb Sandwich Panels.

Material Orientation Spec. No. Shear stress, psi No. cycles to failure

HRP-3/16-8.0 Ribbon 54 + 240 (54%) 41,494
52 + 272 (61%) 15,761
53 + 305 (68%) 1899

Transverse 51 + 120 (32%) 552,307
50 + 160 (43%) 7541
49 + 200 (54%) 1914
48 + 290 (78%) 30

Korex- 1/8-4.5 Ribbon 45 + 204 (59%) 117,955
44 + 238 (69%) 13,313
43 + 272 (79%) 1560

Transverse 55 + 170 (74%) 1,601
47 + 183 (80%) 759
46 + 189 (83%) 76

Figure 16 shows the S-n curve for the Korex and HRP core specimens for failure.
As with the non-reversed tests, the Korex core curve in the transverse direction is

relatively fiat, indicating that the transverse direction failure is very sensitive to load, i.e.,
a small increase in the transverse direction load results in a significant decrease in the
number of cycles to failure. However, the Korex core in the ribbon direction is not as flat
as it was in the non-reversed case, and in fact is similar in slope to the HRP transverse

core. As in the non-reversed case, the Korex core in the ribbon direction is stronger than
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the HRP core in the transverse direction, but the differences are greater for the fully
reversed than the non-reversed.

As with the non-reversed tests, the Korex specimens experienced little increase in
permeability prior to catastrophic failure. However, specimen number 47 did survive
approximately 50 cycles as the permeability increased from 0.1 ml/min/psi to 0.4
ml/min/psi. Though this permeability value and the number of cycles are very small
relative to the HRP core specimens, they are unusual for the Korex core specimens.

350

300

O HRP ribbon
O Korex ribbon

ribbon A HRP transverse

A [] Korex transverse

250

Load, psi HRP

HRPribbon

2OO

Korex transverse

150

100

A

10 100 1000 10000 100000 1000000

Number of cycles

Figure 16: S-n curve for fully reversed fatigue tests of sandwich core panels with
number of cycles to failure.

Figure 17 shows the S-n curve for the HRP core in both the ribbon and transverse
directions. The figure shows the load versus number of cycles to failure and load versus
number of cycles to reach permeability values of 1, 2, and 4 ml/min/psi for each core.
The data points in the figure are for the number of cycles the specific permeability value
is reached. The ribbon curves are shown with the solid line and the transverse curves

with the dashed line. The curves for the ribbon direction are steeper than those for the
transverse direction.

Figure 18 shows the permeability as a function of number of cycles for fully
reversed fatigue tests with HRP core in the transverse direction. The percentage of the
shear strength is also shown on the figure. As mentioned previously, the permeability
increases much more rapidly (implying core degradation) for the fully reversed loading
than the non-reversed loading. An inflection in the permeability is noticed in the 160 psi
and 200 psi cases, but not in the 120 psi or 290 psi cases. As mentioned earlier, the cause
of the inflection is unknown.
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Permeability as a function of number of cycles for fully reversed fatigue
tests with HRP core in the transverse direction (avg. static shear strength of

369.5 psi).
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Figure 19 shows the permeability as a function of numberof cycles for fully
reversedfatiguetestswith HRPcorein theribbondirection. Only threespecimenswere
testedwith thisorientation,andunfortunately,thedecreasein loadbetweentestswasnot
enoughto spreadthe dataout asmuch aswould havebeendesired. The 272 psi case
experienceda sharpdip in thepermeabilityvaluenear2000cycles. It is thoughtthatthis
dip is noise in the dataacquisitionsystem. Someinflection points arealsoseenin the
data.
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Figure 19: Permeability as a function of number of cycles for fully reversed fatigue

tests with HRP core in the ribbon direction (avg. static shear strength of
449.5 psi).

Concluding Remarks

Both Hexcel HRP-3/16-8.0 and DuPont Korex-1/8-4.5 honeycomb core sandwich
specimens were tested under shear loads. The permeability of the core was measured
while the load was applied both statically and dynamically (reversed and non-reversed).
The Korex core specimens failed in the honeycomb core, and the permeability increased
almost instantaneously at failure. In general, the HRP core failed at the bondline, and the
permeability gradually increased until failure. An inflection point was also observed in
the permeability of many of the specimens when subjected to cyclic loads. The cause of
this inflection point is uncertain. Finally, after several test fixture failures during the fully
reversed tests, a test fixture was designed that allowed the fully reversed tests to be
performed.
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